AA2 Extra Practice #4

1. Write the first 4 terms of the sequence.

a.
$$a_n = 18 + 5n$$

b.
$$a_n = 3a_{n-1} - 2$$
; $a_1 = 4$

2. State whether each sequence is arithmetic or geometric. Give d if arithmetic and r if geometric.

a.
$$\frac{4}{3}$$
, 1, $\frac{2}{3}$, $\frac{1}{3}$,...

3. Write a recursive formula for the nth term of the sequence.

4. Write an explicit formula for the nth term of the sequence.

- 5. Find the 27^{th} term of the arithmetic sequence in which $a_{10} = 61$ and $a_{19} = 124$.
- 6. Find the 8^{th} term of the geometric sequence in which $a_1 = 64$ and $a_4 = 1$.
- 7. Find the 10th term of the sequence.

8. Find the sum of each finite series.

a.
$$\sum_{n=1}^{6} 2n + 11$$

b.
$$\sum_{n=1}^{5} 5(2)^n$$

AA2 Extra Practice #4

1. Write the first 4 terms of the sequence.

a.
$$a_n = 18 + 5n$$

b.
$$a_n = 3a_{n-1} - 2$$
; $a_1 = 4$

2. State whether each sequence is arithmetic or geometric. Give d if arithmetic and r if geometric.

a.
$$\frac{4}{3}$$
, 1, $\frac{2}{3}$, $\frac{1}{3}$,...

3. Write a recursive formula for the nth term of the sequence.

4. Write an explicit formula for the nth term of the sequence.

- 5. Find the 27^{th} term of the arithmetic sequence in which $a_{10} = 61$ and $a_{19} = 124$.
- 6. Find the 8^{th} term of the geometric sequence in which $a_1 = 64$ and $a_4 = 1$.
- 7. Find the 10th term of the sequence.

8. Find the sum of each finite series.

a.
$$\sum_{n=1}^{6} 2n + 11$$

b.
$$\sum_{n=1}^{5} 5(2)^n$$

- 1. a) 23,28,33,38
 - b) 4, 10, 28, 82
- 2. a) arithmetic; $d = -\frac{1}{3}$
 - b) geometric; r = -3
- 3. a) $a_n = a_{n-1} + 5$; $a_1 = 3$
 - b) $a_n = -2a_{n-1}$; $a_1 = 4$
- 4. a) $a_n = -7n + 25$
 - b) $a_n = 405 \left(\frac{1}{3}\right)^{n-1}$
- 5. 180
- 6. $\frac{1}{256}$
- 7. a) 17920
 - b) 40.2
- 8. a) 108
 - b) 310

- 1. a) 23,28,33,38
- 2. b) 4, 10, 28, 82
- 3. a) arithmetic; $d = -\frac{1}{3}$
 - b) geometric; r = -3
- 4. a) $a_n = a_{n-1} + 5$; $a_1 = 3$
 - b) $a_n = -2a_{n-1}$; $a_1 = 4$
- 5. a) $a_n = -7n + 25$
 - b) $a_n = 405 \left(\frac{1}{3}\right)^{n-1}$
- 6. 180
- 7. $\frac{1}{256}$
- 8. a) 17920
 - b) 40.2
- 9. a) 108
 - b) 310